Spectral sharpening: sensor transformations for improved color constancy.

نویسندگان

  • G D Finlayson
  • M S Drew
  • B V Funt
چکیده

We develop sensor transformations, collectively called spectral sharpening, that convert a given set of sensor sensitivity functions into a new set that will improve the performance of any color-constancy algorithm that is based on an independent adjustment of the sensor response channels. Independent adjustment of multiplicative coefficients corresponds to the application of a diagonal-matrix transform (DMT) to the sensor response vector and is a common feature of many theories of color constancy. Land's retinex and von Kries adaptation in particular. We set forth three techniques for spectral sharpening. Sensor-based sharpening focuses on the production of new sensors as linear combinations of the given ones such that each new sensor has its spectral sensitivity concentrated as much as possible within a narrow band of wavelengths. Data-based sharpening, on the other hand, extracts new sensors by optimizing the ability of a DMT to account for a given illumination change by examining the sensor response vectors obtained from a set of surfaces under two different illuminants. Finally in perfect sharpening we demonstrate that, if illumination and surface reflectance are described by two- and three-parameter finite-dimensional models, there exists a unique optimal sharpening transform. All three sharpening methods yield similar results. When sharpened cone sensitivities are used as sensors, a DMT models illumination change extremely well. We present simulation results suggesting that in general nondiagonal transforms can do only marginally better. Our sharpening results correlate well with the psychophysical evidence of spectral sharpening in the human visual system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Sharpening of Color Sensors: Diagonal Color Constancy and Beyond

It has now been 20 years since the seminal work by Finlayson et al. on the use of spectral sharpening of sensors to achieve diagonal color constancy. Spectral sharpening is still used today by numerous researchers for different goals unrelated to the original goal of diagonal color constancy e.g., multispectral processing, shadow removal, location of unique hues. This paper reviews the idea of ...

متن کامل

Color Constancy: Enhancing von Kries Adaptation via Sensor Transformations

We show that if surface refiectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new longand medium-wave sensors have sharpened sensitivities—thei...

متن کامل

Sensor sharpening for computational color constancy.

Sensor sharpening [J. Opt. Soc. Am. A 11, 1553 (1994)] has been proposed as a method for improving computational color constancy, but it has not been thoroughly tested in practice with existing color constancy algorithms. In this paper we study sensor sharpening in the context of viable color constancy processing, both theoretically and empirically, and on four different cameras. Our experiment...

متن کامل

Experiments in Sensor Sharpening for Color Constancy

Sensor sharpening has been proposed as a method for improving color constancy algorithms but it has not been tested in the context of real color constancy algorithms. In this paper we test sensor sharpening as a method for improving color constancy algorithms in the case of three different cameras, the human cone sensitivity estimates, and the XYZ response curves. We find that when the sensors ...

متن کامل

Device-Independent Color via Spectral Sharpening

Color sensors in scanners and color copiers are not colorimetric | RGB values are not a linear transformation away from device{independent XYZ tristimu-lus values. For a given set of targets or dyes one can readily nd a best linear transform or use interpolation. However, when the possible targets are unknown, a data-independent transform is needed. Here, we set out a very simple linear transfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 1994